В статье рассмотрено устройство простейшей машины постоянного тока, описан ее принцип действия. Дано определение принципа обратимости электрических машин и электромагнитной мощности.

Устройство простейшей машины

На рисунке 1 представлена простейшая машина постоянного тока, а на рисунке 2 дано схематическое изображение этой машины в осевом направлении. Неподвижная часть машины, называемая индуктором, состоит из полюсов и стального ярма, к которому прикрепляются полюсы. Назначением индуктора является создание в машине основного магнитного потока. Индуктор изображенной на рисунке 1 простейшей машины имеет два полюса 1 (ярмо индуктора на рисунке 1 не показано).

Вращающаяся часть машины состоит из укрепленных на валу цилиндрического якоря 2 и коллектора 3. Якорь состоит из сердечника, набранного из листов электротехнической стали, и обмотки, укрепленной на сердечнике якоря. Обмотка якоря в показанной на рисунке 1 и рисунке 2 простейшей машине имеет один виток. Концы витка соединены с изолированными от вала медными пластинами коллектора, число которых в рассматриваемом случае равно двум. На коллектор наложены две неподвижные щетки 4, с помощью которых обмотка якоря соединяется с внешней цепью.

Основной магнитный поток в нормальных машинах постоянного тока создается обмоткой возбуждения, которая расположена на сердечниках полюсов и питается постоянным током. Магнитный поток проходит от северного полюса N через якорь к южному полюсу S и от него через ярмо снова к северному полюсу. Сердечники полюсов и ярмо также изготовляются из ферромагнитных материалов.

Режим генератора

Рассмотрим сначала работу машины в режиме генератора.

Простейшая машина постоянного тока

Рисунок 1. Простейшая машина постоянного тока

Рисунок 2. Работа простейшей машины постоянного тока в режиме генератора (а) и двигателя (б)

Предположим, что якорь машины (рисунки 1 и 2, а) приводится во вращение по часовой стрелке. Тогда в проводниках обмотки якоря индуктируется э. д. с., направление которой может быть определено по правилу правой руки (рисунок 3, а) и показано на рисунках 1 и 2, а. Поскольку поток полюсов предполагается неизменным, то эта э. д. с. индуктируется только вследствие вращения якоря и называется э. д. с. вращения.

Правила правой и левой руки

Рисунок 3. Правила правой (а) и левой (б) руки

Значения индуктируемой в проводнике обмотки якоря э. д. с.

eпр = B × l × v,

где B – магнитная индукция в воздушном зазоре между полюсом и якорем в месте расположения проводника; l – активная длина проводника, то есть та длина, на протяжении которой он расположен в магнитном поле; v – линейная скорость движения проводника.

В обоих проводниках вследствие симметрии индуктируются одинаковые э. д. с., которые по контуру витка складываются, и поэтому полная э. д. с. якоря рассматриваемой машины

Eа = 2 × eпр = 2 × B × l × v. (1)

Э. д. с. Eа является переменной, так как проводники обмотки якоря проходят попеременно под северным и южным полюсами, в результате чего направление э. д. с. в проводниках меняется. По форме кривая э. д. с. проводника в зависимости от времени t повторяет кривую распределения индукции B вдоль воздушного зазора (рисунок 4, а).

Частота э. д. с. f в двухполюсной машине равна скорости вращения якоря n, выраженной в оборотах в секунду:

f = n,

а в общем случае, когда машина имеет p пар полюсов с чередующейся полярностью,

f = p × n (2)

Если обмотка якоря с помощью щеток замкнута через внешнюю цепь, то в этой цепи, а также в обмотке якоря возникает ток Iа. В обмотке якоря этот ток будет переменным, и кривая его по форме аналогична кривой э. д. с. (рисунок 4, а). Однако во внешней цепи направление тока будет постоянным, что объясняется действием коллектора. Действительно, при повороте якоря и коллектора (рисунок 1) на 90° и изменении направления э. д. с. в проводниках одновременно происходит также смена коллекторных пластин под щетками. Вследствие этого под верхней щеткой всегда будет находиться пластина, соединенная с проводником, расположенным под северным полюсом, а под нижней щеткой – пластина, соединенная с проводником, расположенным под южным полюсом. В результате этого полярность щеток и направление тока во внешней цепи остаются неизменными.

Кривые ЭДС и тока простейшей машины постоянного тока

Рисунок 4. Кривые э. д. с. и тока простейшей машины в якоре (а) и во внешней цепи (б)

Таким образом, в генераторе коллектор является механическим выпрямителем, который преобразовывает переменный ток обмотки якоря в постоянный ток во внешней цепи.

Изменив знак второго полупериода кривой на рисунке 4, а, получим форму кривой тока и напряжения внешней цепи (рисунок 4, б). Образуемый во внешней цепи пульсирующий по значению ток малопригоден для практических целей. Для получения практически свободных от пульсаций тока и напряжения применяют более сложные по устройству обмотку якоря и коллектор. Однако основные свойства машины постоянного тока могут быть установлены на примере рассматриваемой здесь простейшей машины.

Напряжение постоянного тока на зажимах якоря генератора будет меньше Eа на величину падения напряжения в сопротивлении обмотки якоря rа:

Uа = EаIа × rа. (3)

Проводники обмотки якоря Iа с током  находятся в магнитном поле, и поэтому на них будут действовать электромагнитные силы (рисунок 2, а)

Fпр = B × l × Iа, (4)

направление которых определяется по правилу левой руки (рисунок 3, б).  Эти силы создают механический момент , который называется электромагнитным моментом и на рисунке 2, а равен

Mэм = Fпр × Dа = B × l × Dа × Iа, (5)

где Dа – диаметр якоря. Как видно из рисунка 2, а, в режиме генератора этот момент действует против направления вращения якоря и является тормозящим.

Режим двигателя

Рассматриваемая простейшая машина может работать также двигателем, если обмотке ее якоря подвести постоянный ток от внешнего источника. При этом на проводники обмотки якоря будут действовать электромагнитные силы Fпр и возникнет электромагнитный момент Mэм. Величины Fпр и Mэм, как и для генератора, определяются равенствами (4) и (5). При достаточном значении Mэм якорь машины придет во вращение и будет развивать механическую мощность. Момент Mэм при этом является движущим и действует в направлении вращения.

Если мы желаем, чтобы при той же полярности полюсов направление вращения генератора (рисунок 2, а) и двигателя (рисунок 2, б) были одинаковы, то направление действия , а следовательно, и направление тока Iа у двигателя должны быть обратными по сравнению с генератором (рисунок 2, б).

В режиме двигателя коллектор превращает потребляемый из внешней цепи постоянный ток в переменный ток в обмотке якоря и работает, таким образом, в качестве инвертора тока.

Проводники обмотки якоря двигателя также вращаются в магнитном поле, и поэтому в обмотке якоря двигателя тоже индуктируется э. д. с. Eа, значение которой определяется равенством (1).

Направление этой э. д. с. в двигателе (рисунок 2, б) такое же, как и в генераторе (рисунок 2, а). Таким образом, в двигателе э. д. с. якоря Eа направлена против тока Iа и приложенного к зажимам якоря напряжения Uа. Поэтому э. д. с. якоря двигателя называется также противоэлектродвижущей силой.

Приложенное к якорю двигателя напряжение уравновешивается э. д. с. Eа и падением напряжения в обмотке якоря:

Uа = Eа + Iа × rа. (6)

Из сравнения равенств (3) и (6) видно, что в генераторе Uа < Eа , а в двигателе Uа > Eа.

Принцип обратимости

Из изложенного выше следует, что каждая машина постоянного тока может работать как в режиме генератора, так и в режиме двигателя. Такое свойство присуще всем типам вращающихся электрических машин и называется обратимостью.

Для перехода машины постоянного тока из режима генератора в режим двигателя и обратно при неизменной полярности полюсов и щеток и при неизменном направлении вращения требуется только изменение направления тока в обмотке якоря.

Поэтому такой переход может осуществляться весьма просто и в определенных условиях даже автоматически.

Аналогичным образом может происходить изменение режима работы также в машинах переменного тока.

Преобразование энергии

На рисунке 5 показаны направления действия механических и электрических величин в якоре генератора и двигателя постоянного тока.

Направление ЭДС, тока и моментов в генераторе и двигателе постоянного тока

Рисунок 5. Направление э. д. с., тока и моментов в генераторе (а) и двигателе (б) постоянного тока

Согласно первому закону Ньютона в применении к вращающемуся телу, действующие на это тело движущие и тормозные вращающие моменты уравновешивают друг друга. Поэтому в генераторе при установившемся режиме работы электромагнитный момент

Mэм = Mв - Mтр - Mс, (7а)

где Mв – момент на валу генератора, развиваемый первичным двигателем, Mтр – момент сил трения в подшипниках, о воздух и на коллекторе электрической машины, Mс – тормозной момент, вызываемый потерями на гистерезис и вихревые токи в сердечнике якоря. Эти потери мощности появляются в результате вращения сердечника якоря в неподвижном магнитном поле полюсов. Возникающие при этом электромагнитные силы оказывают на якорь тормозящее действие и в этом отношении проявляют себя подобно силам трения.

В двигателе при установившемся режиме работы

Mэм = Mв + Mтр + Mс, (7б)

где Mв – тормозной момент на валу двигателя, развиваемый рабочей машиной (станок, насос и т. п.).

В генераторе Mэм является тормозным, а в двигателе – вращающим моментом, причем в обоих случаях Mв и Mэм противоположны по направлению.

Развиваемая электромагнитным моментом Mэм мощность Pэм называется электромагнитной мощностью и равна

Pэм = Pэм × Ω, (8)

где

Ω = 2 × π × n, (9)

представляет собой угловую скорость вращения.

Подставим в выражение (8) значение Mэм и Ω из равенств (5) и (9) и учтем, что линейная скорость на окружности якоря

 

Тогда получим

Pэм = 2 × B × l × Dа × Iа × π × n = 2 × B × l × v × Iа

 

или на основании выражения (1)

Pэм = Eа × Iа. (10)

В обмотке якоря под действием э. д. с. Eа и тока Iа развивается внутренняя электрическая мощность якоря

Pа= Eа × Iа. (11)

Согласно равенствам (10) и (11), Pэм = Pа, т. е. внутренняя электрическая мощность якоря равна электромагнитной мощности, развиваемой электромагнитным моментом, что отражает процесс преобразования механической энергии в электрическую в генераторе и обратный процесс в двигателе.

Умножим соотношения (3) и (6) на Iа. Тогда для генератора будем иметь

Uа × Iа = Eа × IаIа2 × rа (12)

и для двигателя

Uа × Iа = Eа × Iа + Iа2 × rа. (13)

Левые части этих выражений представляют собой электрические мощности на зажимах якоря, первые члены правых частей – электромагнитную мощность якоря и последние члены – электрические потери мощности в якоре.

Хотя приведенные соотношения получены для простейшей машины постоянного тока (рисунок 1), они действительны и в общем случае при более сложной обмотке якоря, так как э. д. с. и моменты отдельных проводников складываются. Эти соотношения являются выражением закона сохранения энергии и отражают процесс преобразования энергии в машине постоянного тока.

Согласно им, механическая мощность, развиваемая на валу генератора первичным двигателем, за вычетом механических и магнитных потерь, превращается в электрическую мощность в обмотке якоря, а электрическая мощность за вычетом потерь в этой обмотке выдается во внешнюю цепь. В двигателе электрическая мощность, подводимая к якорю из внешней цепи, частично расходуется на потери в обмотке якоря, а остальная часть этой мощности превращается в мощность электромагнитного поля и последняя – в механическую мощность, которая за вычетом потерь на трение и потерь в стали якоря передается рабочей машине.

Установленные выше применимо к машине постоянного тока общие закономерности превращения энергии в равной степени относятся также к машинам переменного тока.

Источник: Вольдек А. И., "Электрические машины. Учебник для технических учебных заведений" – 3-е издание, переработанное – Ленинград: Энергия, 1978 – 832с.