Хотя в промышленности применяется главным образом переменный ток, генераторы постоянного тока широко используются в различных промышленных, транспортных и других установках (для питания электроприводов с широким регулированием скорости вращения, в электролизной промышленности, на судах, тепловозах и так далее). В этих случаях генераторы постоянного тока обычно приводятся во вращение электродвигателями переменного тока, паровыми турбинами или двигателями внутреннего сгорания.

Классификация генераторов постоянного тока по способу возбуждения

Различаются генераторы независимого возбуждения и генераторы с самовозбуждением.

Генераторы независимого возбуждения делятся на генераторы с электромагнитным возбуждением (рисунок 1, а), в которых обмотка возбуждения ОВ питается постоянным током от постороннего источника (аккумуляторная батарея, вспомогательный генератор или возбудитель постоянного тока, выпрямитель переменного тока), и на магнитоэлектрические генераторы с полюсами в виде постоянных магнитов. Генераторы последнего типа изготавливаются только на малые мощности. В данной главе рассматриваются генераторы с электромагнитным возбуждением.

В генераторах с самовозбуждением обмотки возбуждения питаются электрической энергией, вырабатываемой в самом генераторе.

Во всех генераторах с электромагнитным возбуждением на возбуждение расходуется 0,3 – 5% номинальной мощности машины. Первая цифра относится к самым мощным машинам, а вторая – к машинам мощностью около 1 кВт.

Генераторы с самовозбуждением в зависимости от способа включения обмоток возбуждения делятся на 1) генераторы параллельного возбуждения, или шунтовые (рисунок 1, б), 2) генераторы последовательного возбуждения, или сериесные (рисунок 1, в), и 3) генераторы смешанного возбуждения, или компаундные (рисунок 1, г).

Генераторы смешанного возбуждения имеют две обмотки возбуждения, расположенные на общих главных полюсах: параллельную и последовательную. Если эти обмотки создают намагничивающую силу одинакового направления, то их включение называется согласным; в противном случае соединение обмоток называется встречным. Обычно применяется согласное включение обмоток возбуждения, причем основная часть намагничивающей силы возбуждения (65 – 80%) создается параллельной обмоткой возбуждения.

Схемы генераторов и двигателей постоянного тока

Рисунок 1. Схемы генераторов и двигателей независимого (а), параллельного (б), последовательного (в), смешанного (г) возбуждения (сплошные стрелки – направления токов в режиме генератора, штриховые – в режиме двигателя)

На рисунке 1, г конец параллельной обмотки возбуждения (от реостата возбуждения) подключен за последовательной обмоткой возбуждения ("длинный шунт"), однако этот конец может быть присоединен и непосредственно к якорю ("короткий шунт"). Существенной разницы в этих вариантах соединения нет, так как падение напряжения в последовательной обмотке составляет только 0,2 – 1,0% от Uн и ток iв мал. Обычно применяется соединение, изображенное на рисунке 1, г.

В генераторе параллельного возбуждения ток возбуждения составляет 1 – 5% от номинального тока якоря Iан или тока нагрузки Iн = Iанiв. В генераторах последовательного возбуждения эти токи равны друг другу: iв = Iа = I и падение напряжения на обмотке возбуждения при номинальной нагрузке составляет 1 – 5% от Uн. Обмотки возбуждения у генераторов параллельного возбуждения имеют большое число витков малого сечения, а у генераторов последовательного возбуждения – относительно малое число витков большого сечения.

В цепях обмоток параллельного возбуждения, а часто также в цепи обмотки независимого возбуждения для регулирования тока возбуждения включают реостаты Rр.в (рисунок 1, а, б, и г).

Крупные машины постоянного тока работают с независимым возбуждением. Машины малой и средней мощности большей частью имеют параллельное или смешанное возбуждение. Генераторы с последовательным возбуждением менее распространены.

Энергетическая диаграмма генератора независимого возбуждения
Рисунок 2. Энергетическая диаграмма генератора независимого возбуждения

Энергетическая диаграмма

Энергетическая диаграмма генератора независимого возбуждения представлена на рисунке 2. Получаемая от первичного двигателя механическая мощность P1 за вычетом потерь механических pмх, магнитных pмг и добавочных pд преобразуется в якоре в электромагнитную мощность Pэм. Мощность Pэм частично тратится на электрические потери pэла в цепи якоря (в обмотках якоря, добавочных полюсов и компенсационной и в переходном сопротивлении щеточного контакта), а остальная часть этой мощности представляет собой полезную мощность P2, отдаваемую потребителям. Потери на возбуждение pв в генераторе независимого возбуждения покрываются за счет постороннего источника тока.

На основании изложенного для генератора независимого возбуждения имеем уравнение мощностей

P2 = P1pмхpмгpдpэла = Pэмpэла (1)

Можно написать также следующее уравнение мощностей:

P1 = pмх + pмг + pд + Pэм (2)

Аналогичные энергетические диаграммы можно построить и для других типов генераторов.

Уравнение вращающих моментов

Если все члены уравнения (2) разделить на угловую скорость вращения якоря

Ω = 2 × π × n

то получим уравнение вращающих моментов для установившегося режима работы:

(3)

Здесь

(4)

представляет собой приложенный к валу вращающий момент первичного двигателя,

(5)

– электромагнитный момент, развиваемый якорем, и

(6)

– тормозной момент, соответствующий потерям на трение (Мтр) и магнитным и добавочный потерям (Мс.д), которые покрываются за счет механической мощности.

В неустановившемся режиме, когда скорость вращения изменяется, возникает также так называемый динамический момент вращения

(7)

где J – момент инерции вращающихся частей генератора. Динамический момент соответствует изменению кинетической энергии вращающихся масс. При увеличении скорости вращения момент Mдин > 0 и, как и момент M0 + Mэм, являются тормозным. В данном случае кинетическая энергия вращающихся масс увеличивается за счет работы первичного двигателя. Если момент Mдин < 0, он действует в направлении вращения и является движущим, поддерживая вращение за счет уменьшения кинетической энергии вращающихся масс.

Таким образом, в общем случае, при n ≠ const,

(8)

Момент

Mст = M0 + Mэм (9)

соответствующий статическим силам, называют статическим моментом. Поэтому можно также написать

Mв = Mст + Mдин (10)

Уравнение напряжения

Уравнение напряжения U на зажимах генератора имеет вид

U = EаIа × rа – 2 × ΔUщ (11)

где

Eа = cе × Фδ × n (12)

представляет собой э. д. с. якоря, rа – сопротивление всех последовательно соединенных обмоток цепи якоря, а 2 × ΔUщ – падение напряжение в контактном слое щеток обеих полярностей.

Обычно для упрощения вычислений вводят постоянное сопротивление щеточных контактов

Rщ = 2 × ΔUщ / Iан (13)

и вместо выражения (11) пользуются уравнением

(14)

где

Rа = rа + Rщ (15)

– полное сопротивление якоря.

Вследствие непостоянства переходного сопротивления щеток уравнение (14) является несколько приближенным, но погрешность незначительна. Для угольных и графитных щеток берется 2 × ΔUщ = 2 В и для металлографитных щеток 2 × ΔUщ = 0,6 В. В режиме генератора всегда U меньше Eа.

Установка щеток в нейтраль

Обычно щетки устанавливаются на геометрической нейтрали.

Установка щеток на нейтраль производится индуктивным способом – путем включения и выключения постоянного тока в обмотке возбуждения неподвижной машины и наблюдения за показаниями вольтметра или гальванометра, присоединенного к щеткам. Щеточная траверса устанавливается и закрепляется в положении, при котором отклонение стрелки прибора при включении и выключении тока возбуждения равно нулю или минимально. Лучше иметь прибор с нулем посредине шкалы. Ток в обмотке возбуждения не должен превышать примерно 10% от номинального во избежание индуктирования больших э. д. с. самоиндукции, способных повредить изоляцию обмотки возбуждения.

Можно также установить щетки в таком положении, когда при холостом ходе у генератора напряжение максимально или у двигателя скорость вращения минимальна. Однако этот способ является более грубым.

Источник: Вольдек А. И., "Электрические машины. Учебник для технических учебных заведений" – 3-е издание, переработанное – Ленинград: Энергия, 1978 – 832с.