Естественные скоростная и механическая характеристики
Рассмотрим более подробно характеристики двигателя параллельного возбуждения, которые определяют его рабочие свойства.
Скоростная и механическая характеристики двигателя определяются равенствами (7) и (9), представленными в статье "Общие сведения о двигателях постоянного тока", при U = const и iв = const. При отсутствии дополнительного сопротивления в цепи якоря эти характеристики называются естественными.
Если щетки находятся на геометрической нейтрали, при увеличении Iа поток Фδ несколько уменьшится вследствие действия поперечной реакции якоря. В результате этого скорость n, согласно выражению (7), представленному в статье "Общие сведения о двигателях постоянного тока", будет стремится возрасти. С другой стороны, падение напряжения Rа × Iа вызывает уменьшение скорости. Таким образом, возможны три вида скоростной характеристики, изображенные на рис. 1: 1 – при преобладании влияния Rа × Iа; 2 – при взаимной компенсации влияния Rа × Iа и уменьшения Фδ; 3 – при преобладании влияния уменьшения Фδ.
Ввиду того что изменение Фδ относительно мало, механические характеристики n = f(M) двигателя параллельного возбуждения, определяемые равенством (9), представленным в статье "Общие сведения о двигателях постоянного тока", при U = const и iв = const совпадают по виду с характеристиками n = f(Iа) (рисунок 1). По этой же причине эти характеристики практически прямолинейны.
Рисунок 1. Виды естественных скоростных и механических характеристик двигателя параллельного возбуждения |
Характеристики вида 3 (рисунок 1) неприемлемы по условиям устойчивой работы (смотрите статью "Регулирование скорости вращения и устойчивость работы двигателей постоянного тока"). Поэтому двигатели параллельного возбуждения изготавливаются со слегка падающими характеристиками вида 1 (рисунок 1). В современных высокоиспользованных машинах ввиду довольно сильного насыщения зубцов якоря влияние поперечной реакции якоря может быть настолько большим, что получить характеристику вида 1 (рисунок 1) невозможно. Тогда для получения такой характеристики на полюсах помещают слабую последовательную обмотку возбуждения согласного включения, намагничивающая сила которой составляет до 10% от намагничивающей силы параллельной обмотки возбуждения. При этом уменьшение Фδ под воздействием поперечной реакции якоря частично или полностью компенсируется. Такую последовательную обмотку возбуждения называют стабилизирующей, а двигатель с такой обмоткой по-прежнему называется двигателем параллельного возбуждения.
Изменение скорости вращения Δn (рисунок 1) при переходе от холостого хода (Iа = Iа0) к номинальной нагрузке (Iа = Iан) у двигателя параллельного возбуждения при работе на естественной характеристике мало и составляет 2 – 8% от nн. Такие слабо падающие характеристики называются жесткими. Двигатели параллельного возбуждения с жесткими характеристиками применяются в установках, в которых требуется, чтобы скорость вращения при изменении нагрузки сохранялась приблизительно постоянной (металлорежущие станки и прочее).
Рисунок 2. Механические и скоростные характеристики двигателя параллельного возбуждения при разных потоках возбуждения |
Регулирование скорости посредством ослабления магнитного потока
Регулирование скорости посредством ослабления магнитного потока производится обычно с помощью реостата в цепи возбуждения Rр.в (смотрите рисунок 1, б в статье "Общие сведения о генераторах постоянного тока" и рисунок 1 в статье "Пуск двигателей постоянного тока"). При отсутствии добавочного сопротивления в цепи якоря (Rра = 0) и U = const характеристики n = f(Iа) и n = f(M), определяемые равенствами (7) и (9), представленными в статье "Общие сведения о двигателях постоянного тока", для разных значений Rр.в, iв или Фδ имеют вид, показанный на рисунке 2. Все характеристики n = f(Iа) сходятся на оси абсцисс (n = 0) в общей точке при весьма большом токе Iа, который, согласно выражению (5), представленному в статье "Общие сведения о двигателях постоянного тока", равен
Iа = U / Rа .
Однако механические характеристики n = f(M) пересекают ось абсцисс в разных точках.
Нижняя характеристика на рисунке 2 соответствует номинальному потоку. Значения n при установившемся режиме работы соответствуют точкам пересечения рассматриваемых характеристик с кривой Mст = f(n) для рабочей машины, соединенной с двигателем (жирная штриховая линия на рисунке 2).
Точка холостого хода двигателя (M = M0, Iа = Iа0) лежит несколько правее оси ординат на рисунке 2. С увеличением скорости вращения n вследствие увеличения механических потерь M0 и Iа0 также увеличиваются (тонкая штриховая линия на рисунке 2).
Если в этом режиме с помощью приложенного извне момента вращения начать увеличивать скорость вращения n, то Eа [смотрите выражение (6) в статье "Общие сведения о двигателях постоянного тока"] будет увеличиваться, а Iа и M будут, согласно равенствам (5) и (8), представленным в статье "Общие сведения о двигателях постоянного тока", уменьшаться. При Iа = 0 и M = 0 механические и магнитные потери двигателя покрываются за счет подводимой к валу механической мощности, а при дальнейшем увеличении скорости Iа и M изменят знак и двигатель перейдет в генераторный режим работы (участки характеристик на рисунке 2 левее оси ординат).
Двигатели общего применения допускают по условиям коммутации регулирование скорости ослаблением поля в пределах 1 : 2. Изготавливаются также двигатели с регулированием скорости таким способом в пределах до 1 : 5 или даже 1 : 8, но в этом случае для ограничения максимального напряжения между коллекторными пластинами необходимо увеличить воздушный зазор, регулировать поток по отдельным группам полюсов (смотрите статью "Регулирование скорости вращения и устойчивость работы двигателей постоянного тока") или применить компенсационную обмотку. Стоимость двигателя при этом увеличивается.
Регулирование скорости сопротивлением в цепи якоря, искусственные механическая и скоростная характеристики
Если последовательно в цепь якоря включить добавочное сопротивление Rра (рисунок 3, а), то вместо выражений (7) и (9), представленных в статье "Общие сведения о двигателях постоянного тока", получим
(1) |
(2) |
Сопротивление Rра может быть регулируемым и должно быть рассчитано на длительную работу. Цепь возбуждения должна быть включена на напряжение сети.
Рисунок 3. Схема регулирования скорости вращения двигателя параллельного возбуждения с помощью сопротивления в цепи якоря (а) и соответствующие механические и скоростные характеристики (б)
Характеристики n = f(M) и n = f(Iа) для различных значений Rра = const при U = const и iв = const изображены на рисунке 3, б (Rра1 < Rра2 < Rра3). Верхняя характеристика (Rра = 0) является естественной. Каждая из характеристик пересекает ось абсцисс (n = 0) в точке, для которой
Продолжения этих характеристик под осью абсцисс на рисунке 3 соответствуют торможению двигателя противовключением. В этом случае n < 0, э. д. с. Eа имеет противоположный знак и складывается с напряжением сети U, вследствие чего
а момент двигателя M действует против направления вращения и является поэтому тормозящим.
Если в режиме холостого хода (Iа = Iа0) с помощью приложенного извне момента вращения начать увеличивать скорость вращения, то сначала достигается режим Iа = 0, а затем Iа изменит направление и машина перейдет в режим генератора (участки характеристик на рисунке 3, б слева от оси ординат).
Как видно из рисунка 3, б, при включении Rра характеристики становятся менее жесткими, а при больших значениях Rра – круто падающими, или мягкими.
Если кривая момента сопротивления Mст = f(n) имеет вид, изображенный на рисунке 3, б жирной штриховой линией, то значения n при установившемся режиме работы для каждого значения Rра определяются точками пересечения соответствующих кривых. Чем больше Rра, тем меньше n и ниже коэффициент полезного действия (к. п. д.).
Регулирование скорости посредством изменения напряжения якоря
Регулирование скорости посредством изменения напряжения якоря может осуществляется с помощью агрегата "генератор – двигатель" (Г – Д), называемого также агрегатом Леонарда (рисунок 4). В этом случае первичный двигатель ПД (переменного тока, внутреннего сгорания и тому подобный) вращает с постоянной скоростью генератор постоянного тока Г. Якорь генератора непосредственно подключен к якорю двигателя постоянного тока Д, который служит приводом рабочей машины РМ. Обмотки возбуждения генератора ОВГ и двигателя ОВД питаются от независимого источника – сети постоянного тока (рисунок 4) или от возбудителей (небольших генераторов постоянного тока) на валу первичного двигателя ПД. Регулирование тока возбуждения генератора iв.г должно производиться практически от нуля (на рисунке 4 с помощью реостата, включенного по потенциометрической схеме). При необходимости реверсирования двигателя можно изменить полярность генератора (на рисунке 4 с помощью переключателя П).
Рисунок 4. Схема агрегата "генератор – двигатель" для регулирования скорости двигателя независимого возбуждения
Пуск двигателя Д и регулирование его скорости осуществляют следующим образом. При максимальном iв.д и iв.г = 0 производят пуск первичного двигателя ПД. Затем плавно увеличивают iв.г, и при небольшом напряжении генератора U двигатель Д придет во вращение. Регулируя, далее, U в пределах до U = Uн, можно получить любые скорости вращения двигателя до n = nн. Дальнейшее увеличение n возможно путем уменьшения iв.д. Для реверсирования двигателя уменьшают iв.г до нуля, переключают ОВГ и снова увеличивают iв.г от значения iв.г = 0.
Когда рабочая машина создает резко пульсирующую нагрузку (например, некоторые прокатные станы) и нежелательно, чтобы пики нагрузки полностью передавались первичному двигателю или в сеть переменного тока, двигатель Д можно снабдить маховиком (агрегат Г – Д – М, или агрегат Леонарда – Ильгнера). В этом случае при понижении n во время пика нагрузки часть этой нагрузки покрывается за счет кинетической энергии маховика. Эффективность действия маховика будет больше при более мягкой характеристике двигателя ПД или Д.
В последнее время все чаще двигатель ПД и генератор Г заменяют полупроводниковым выпрямителем с регулируемым напряжением. В этом случае рассматриваемый агрегат называют также вентильным (тиристорным) приводом.
Рассмотренные агрегаты используются при необходимости регулирования скорости вращения двигателя с высоким к. п. д. в широких пределах – до 1 : 100 и более (крупные металлорежущие станки, прокатные станы и так далее).
Отметим, что изменение U с целью регулирования n по схеме рисунка 1, б, показанного в статье "Общие сведения о генераторах постоянного тока" и рисунка 3, а, не дает желаемых результатов, так как одновременно с изменением напряжения цепи якоря изменяется пропорционально U также ток возбуждения. Так как регулирование U можно производить только от значения U = Uн вниз, то вскоре магнитная цепь окажется насыщенной, вследствие чего U и iв будут изменяться пропорционально друг другу. Согласно равенству (7), представленному в статье "Общие сведения о двигателях постоянного тока"), n при этом существенным образом не меняется.
В последнее время все больше распространяется так называемое импульсное регулирование двигателей постоянного тока. При этом цепь якоря двигателя питается от источника постоянного тока с постоянным напряжением через тиристоры, которые периодически, с частотой 1 – 3 кГц включаются и отключаются. Чтобы сгладить при этом кривую тока якоря, на его зажимах подключаются конденсаторы. Напряжение на зажимах якоря в этом случае практически постоянно и пропорционально отношению времени включения тиристоров ко времени продолжительности всего цикла. Таким образом, импульсный метод позволяет регулировать скорость вращения двигателя при его питании от источника с постоянным напряжением в широких пределах без реостата в цепи якоря и практически без дополнительных потерь. Таким же образом, без пускового реостата и без дополнительных потерь, может производиться пуск двигателя.
Импульсный способ регулирования в экономическом отношении весьма выгоден для управления двигателями, работающими в режимах переменной скорости вращения с частыми пусками, например на электрифицированном транспорте.
Рисунок 5. Рабочие характеристики двигателя параллельного возбуждения Pн = 10 кВт, Uн = 200 В, nн = 950 об/мин |
Рабочие характеристики
Рабочие характеристики представляют собой зависимости потребляемой мощности P1, потребляемого тока I, скорости n, момента M, и к. п. д. η от полезной мощности P2 при U = const и неизменных положениях регулирующих реостатов. Рабочие характеристики двигателя параллельного возбуждения малой мощности при отсутствии добавочного сопротивления в цепи якоря представлены на рисунке 5.
Одновременно с увеличением мощности на валу P2 растет и момент на валу M. Поскольку с увеличением P2 и M скорость n несколько уменьшается, то M ∼ P2 / n растет несколько быстрее P2. Увеличение P2 и M, естественно, сопровождается увеличением тока двигателя I. Пропорционально I растет также потребляемая из сети мощность P1. При холостом ходе (P2 = 0) к. п. д. η = 0, затем с увеличением P2 сначала η быстро растет, но при больших нагрузках в связи с большим ростом потерь в цепи якоря η снова начинает уменьшаться.
Источник: Вольдек А. И., "Электрические машины. Учебник для технических учебных заведений" – 3-е издание, переработанное – Ленинград: Энергия, 1978 – 832с.