Ртутные лампы типа ДРЛ
Рисунок 1. Схема лампы ДРЛ: 1 – ртутно-кварцевая горелка; 2 – резисторы; 3 – внешняя колба; 4 – слой люминофора; 5 – рабочие электроды; 6 – вспомогательные электроды |
Рассмотренная в статье "Работа лампы ДРЛ" кварцевая горелка подвержена сильному влиянию внешней среды, от которой зависят условия охлаждения. Стабильность работы лампы с такой горелкой обеспечивается размещением ее внутри внешней колбы. Внутренняя поверхность внешней колбы покрывается слоем люминофора, который за счет поглощения ультрафиолетовой части излучения ртутного разряда добавляет к видимому излучению этого разряда недостающее в нем излучение в красной области спектра. Для обеспечения охлаждения кварцевой горелки не только излучением, а также конвекцией и теплопередачей внешняя колба наполняется газом, который должен быть инертным по отношению к люминофору и деталям монтажа лампы. В качестве наполняющего газа применяют смесь аргона с азотом.
Устройство лампы ДРЛ показано на рисунке 1. Присоединение ламп к сети осуществляется с помощью резьбовых цоколей, аналогичных применяемым для ламп накаливания: Е27 – для ламп мощностью до 250 Вт и Е40 – для ламп большей мощности. Для облегчения зажигания лампа выполняется трех- или четырехэлектродной. У последних основные и вспомогательные электроды соединяются через резисторы.
Форма и размеры внешней колбы и положение горелки в ней выбирают с таким расчетом, чтобы все ультрафиолетовое излучение горелки падало на слой люминофора и во время работы и во время работы лампы слой люминофора имел оптимальную для его работы температуру.
Нагрев внешней колбы происходит за счет поглощения части излучения разряда слоем нанесенного на нее люминофора и стеклом, а также теплопередачи через наполняющий колбу инертный газ. Охлаждение осуществляется благодаря излучению нагретого стекла и теплопередаче через окружающий воздух.
Равномерность температуры поверхности колбы может быть достигнута, если, пренебрегая в первом приближении конвекцией наполняющего колбу инертного газа, выполнять ее в виде поверхности, обеспечивающей равномерную облученность. Расчеты показывают, что центральная часть колбы должна иметь поверхность, близкую к эллипсоиду вращения, с большой осью, совпадающей с осью горелки. Поправка на конвекцию вынуждает несколько увеличивать диаметр той части колбы, которая при работе лампы оказывается наверху. Так как лампы практически эксплуатируют в любом положении, то поправок в форму колбы не вносят.
В ряде конструкций ламп колба выполняет роль оптического элемента, перераспределяющего световой поток. В этом случае форма и размер колбы должны рассчитываться, как это делается для светильников, причем в расчете должен также учитываться ее тепловой режим.
Для исправления цветности ламп типа ДРЛ применяют различные виды люминофоров. Применение фосфат-ванадат-иттриевого люминофора вместо фторогерманата магния позволило улучшить параметры ламп типа ДРЛ.
Применение люминофора, нанесенного на внутреннюю стенку внешней колбы, с одной стороны, приводит к добавлению в спектре недостающего красного излучения, а с другой – вызывает поглощение в этом слое части видимого излучения. С ростом толщины слоя люминофора поток излучения лампы имеет максимум при определенной толщине слоя, в то время как проходящий через слой люминофора световой поток разряда постепенно уменьшается. Для решения вопроса об оптимальной толщине слоя люминофора и общей оценки его эффективности для характеристики ламп типа ДРЛ введено понятие "красное отношение". Красным отношением называют выраженное в процентах отношение красного светового потока, добавляемого люминофором, к общему световому потоку ламп. Очевидно, что лучшими будут люминофор и такой его слой, которые при создании красного отношения, достаточного для обеспечения правильной цветопередачи, обеспечивают максимальный световой поток лампы в целом, то есть наибольшую световую отдачу.
Красное отношение принято выражать в процентах зависимостью
где φ (λ) – спектральная плотность потока излучения лампы; V (λ) – относительная чувствительность глаза.
Красное отношение для ламп типа ДРЛ с оптимальной толщиной люминофора из фторогерманата и арсената магния достигает 8 %, а световой поток – 87 % светового потока лампы без люминофора. Применение ортофосфатноцинковых люминофоров с добавкой стронция позволяет получить световой поток, на 15 % превышающий световой поток лампы без люминофора, и rкр = 4 – 5 %.
В процессе зажигания ламп имеет место катодное распыление активного вещества катода и стержневой части электрода. В установившемся режиме горения на переменном токе из-за перезажигания разряда в каждый полупериод распыление стержневой части электрода продолжается. Это ухудшает со временем эмиссионные свойства обеих частей электродов, соответственно растет необходимое для зажигания ламп напряжение. Распыление электродов приводит одновременно к поглощению молекул наполняющего лампу инертного газа, начальное давление которого выбиралось из условий зажигания разряда. Эти процессы приводят к образованию на стенках горелки темного налета из частиц распылившихся электродов, поглощающего излучение, в особенности его ультрафиолетовую составляющую, и красное отношение снижается. Прекращение зажигания определяет полный срок службы ламп типа ДРЛ, а нормируемое снижение световой отдачи – их полезный срок службы.
Рисунок 2. Детали конструкции горелки ртутной лампы высокого давления: 1 – основной электрод; 2 – молибденовые фольговые вводы основного электрода и электрода поджига; 3 – добавочный резистор в цепи электрода зажигания; 4 – цепь электрода зажигания |
Условное обозначение ламп ДРЛ расшифровывается следующим образом: Д – дуговая, Р – ртутная, Л – люминесцентная. Цифры после букв соответствуют мощности лампы в ваттах, дальше в скобках приводится красное отношение в процентах и через дефис – номер разработки. Подавляющее большинство ламп типа ДРЛ выпускаются четырехэлектродными, то есть с дополнительными электродами для облегчения зажигания (смотрите рисунок 2). Такие лампы зажигаются непосредственно от напряжения сети. Небольшая часть ламп ДРЛ изготовляются двухэлектродными, для их зажигания применяют специальные зажигающие устройства.
Лампы ДРЛ находят применение в установках наружного освещения и для освещения высоких помещений промышленных предприятий, где не предъявляется жестких требований к качеству цветопередачи.
Влияние температуры окружающей среды сказывается прежде всего на напряжении зажигания ламп. При отрицательных температурах зажигание ламп типа ДРЛ затруднено, что связано со значительным уменьшением давления ртути, в результате чего зажигание происходит в чистом аргоне и требует более высоких напряжений, чем при наличии паров ртути. Согласно ГОСТ 16354-77 лампы типа ДРЛ всех мощностей должны зажигаться при напряжении не более 180 В при температуре окружающей среды 20 – 40 °С; при температуре -25 °С напряжениезажигания ламп увеличивается до 205 В, при -40 °С напряжение зажигания для ламп мощностью 80 – 400 Вт составляет не более 250 В, мощностью 700 и 1000 Вт – 300 В. На световые и электрические параметры ламп типа ДРЛ изменение внешней температуры практически не влияет. В таблице 1 приведены параметры ламп типа ДРЛ. Лампы имеют две модификации с красным отношением 6 и 10 %.
Таблица 1
Основные параметры ламп типа ДРЛ по ГОСТ 16357-79
Тип лампы | Мощность, Вт | Рабочее напряжение, В | Ток, А | Световой поток, лм | Размеры, мм | Средний срок службы | |
диаметр внешней колбы | полная длина | ||||||
ДРЛ80(6)-2 ДРЛ125(6)-2 ДРЛ250(6) ДРЛ400(6)-2 ДРЛ700(6)-2 ДРЛ1000(6)-2 ДРЛ2000(6) | 80 125 250 400 700 1000 2000 | 115 125 130 135 140 145 270 | 0,80 1,15 2,13 3,25 5,40 7,50 8,00 | 3400 6000 13000 23000 40000 57000 120000 | 81 91 91 122 152 181 187 | 165 184 227 292 368 410 445 | 10000 10000 12000 15000 15000 15000 6000 |
Ртутно-вольфрамовые лампы
Рисунок 3. Схема ртутно-вольфрамовой лампы: 1 – вольфрамовая спираль; 2 – ртутно-кварцевая горелка |
Затрудненное зажигание ламп типа ДРЛ при отрицательных температурах, использование индуктивных балластов, а также необходимость исправления цветности излучения привели к созданию ламп высокого давления с балластом в виде нити лампы накаливания. Отметим, что большие потери мощности в активном балласте, которым является нить накаливания, по сравнению с потерями в индуктивном балласте компенсируются простотой активного балласта при возможности одновременного получения с его помощью недостающего красного излучения.
Поместив во внешнюю колбу, в которой размещена кварцевая горелка для уменьшения зависимости ее параметров от внешней температуры, балластную нить накала, удалось получить лампу, пригодную для непосредственного включения в сеть. Конструкция такой лампы показана на рисунке 3. Размещение нити накала внутри колбы лампы создает дополнительное преимущество, заключающееся в сокращении периода разгорания за счет нагрева горелки излучением спирали.
Основным при расчете ламп смешанного света, как называют иногда ртутно-вольфрамовые лампы, является выбор параметров нити накала. Мощность нити выбирают исходя из условия стабилизации ртутного разряда. световую отдачу нити приходится снижать ради получения достаточно красного отношения, одновременно обеспечивается срок службы нити, соизмеримый со сроком службы кварцевых горелок. В пусковой период напряжение сети целиком падает на спираль, однако по мере разгорания ртутной лампы напряжение на ней повышается, а напряжение на балластной спирали снижается до рабочего значения. Световая отдача ртутно-вольфрамовых ламп составляет 18 – 20 лм/Вт, так как около 50 % мощности расходуется на нагрев спирали. Поэтому эти лампы по экономичности не могут конкурировать с лампами типа ДРЛ и другими лампами высокого давления. Их применение ограничено специальными областями, например, облучательной техникой.
Лампы типа ДРВЭ имеют внешнюю колбу, выполненную из специального стекла, пропускающего ультрафиолетовое излучение. Такие лампы применяют для совместного освещения и облучения, например в теплицах. Срок службы таких ламп составляет 3 – 5 тысяч часов, он определяется сроком службы вольфрамовой нити накала.
Трубчатые ртутные лампы
Кроме ламп работающих на основе разряда высокого давления в парах ртути и предназначенных для целей освещения, изготовляют несколько видов источников излучения, разработка которых связана с необходимостью использования не только видимого, но и ультрафиолетового излучения. Как известно, ультрафиолетовое излучение обладает химическим и биологическим действием. Широко используется актиничность ультрафиолетового излучения, то есть воздействие на светочувствительные материалы, применяемые в полиграфической промышленности. Мощные потоки бактерицидного излучения, большие, чем у бактерицидных люминесцентных ламп, позволяют использовать ртутные лампы высокого давления для целей обеззараживания воды и других веществ. Химическая активность ультрафиолетового излучения и возможность сконцентрировать большие мощности излучения на небольших поверхностях привели к широкому использованию ртутных ламп высокого давления в химической, деревообрабатывающей и других отраслях промышленности.
Для ламп этого типа необходимы колбы из механически прочного и тугоплавкого кварцевого стекла. Применяемое кварцевое стекло, пропускающее ультрафиолетовое излучение начиная с длины волны 220 нм, то есть практически весь спектр излучения ртутного разряда, позволяет изменять параметры излучения лишь за счет изменения рабочего давления. Непрозрачность кварцевого стекла для резонансного излучения с длиной воны 185 нм не имеет практического значения, так как ультрафиолетовое излучение такой длины волны практически полностью поглощается воздухом.
Указанное привело к созданию ртутных ламп высокого давления, отличающихся конструкцией, обусловленной рабочим давлением и областью применения. основные параметры ламп высокого давления приведены в таблице 2.
Таблица 2
Основные параметры ртутных трубчатых ламп высокого давления по ГОСТ 20401-75
Тип лампы | Мощность, Вт | Напряжение, В | Ток, А | Длина дуги, мм | Габаритная длина, мм | Диаметр горелки, мм | Средний срок службы, ч |
ДРТ230 ДРТ400 ДРТ1000 ДРТ2500 ДРТ2800 ДРТ5000 ДРТ4000 | 230 400 1000 2500 2800 5000 4000 | 70 135 145 850 1150 1800 1900 | 3,8 3,25 7,5 3,4 2,4 3,1 2,4 | 60 120 175 1000 610 1100 1000 | 190 265 350 1200 700 1290 1118 | 20 22 32 21 15 20 14 | 1500 2700 1500 3500 1000 1500 13000 |
Промышленность выпускает ртутные лампы типа ДРТ (дуговые ртутные трубчатые) с давлением до 2 × 105 Па в виде прямых трубок диаметром 14 – 32 мм. На рисунке 4 даны общий вид и габаритные размеры ламп типа ДРТ различной мощности. Оба конца трубок имеют удлинения меньшего диаметра, в которые впаяна молибденовая фольга, служащая вводами. С внутренней стороны ламп к вводам приварены вольфрамовые активированные самокалящиеся электроды, конструкция которых показана на рисунке 5. Для крепления ламп в арматуре лампы снабжены металлическими хомутиками с держателями. Имеющийся посредине колбы носик является остатком штенгеля, отпаянного после вакуумной обработки лампы. Для облегчения зажигания лампы имеют специальную полосу, на которую подается зажигающий импульс.
Рисунок 4. Общий вид ламп типа ДРТ (давление паров ртути до 0,2 МПа) мощностью, Вт:
а – 230; б – 400; в – 1000
Рисунок 5. Электроды (катоды) ртутных ламп высокого давления:
1 – активное вещество (оксид); 2 – вольфрамовый сердечник; 3 – спираль
Трубчатые ксеноновые лампы
К трубчатым лампам высокого давления относят также лампы, в которых используется излучение ксенона при давлениях от сотен до миллионов паскалей. Характерной особенностью разряда в инертных газах при высоких давлениях и больших плотностях тока является непрерывный спектр излучения, обеспечивающий хорошую цветопередачу освещаемых объектов. В видимой области спектр ксенонового разряда близок к солнечному с цветовой температурой 6100 – 6300 К. Важной особенностью такого разряда является его возрастающая вольт-амперная характеристика при высоких плотностях тока, что позволяет стабилизировать разряд с помощью небольших балластных сопротивлений. Ксеноновые трубчатые лампы значительной длины могут включаться в сеть вообще без дополнительного балласта. Преимуществом ксеноновых ламп является отсутствие периода разгорания. Параметры ксеноновых ламп практически не зависят от температуры окружающей среды вплоть до температур -50 °С, что позволяет применять их в установках наружного освещения в любых климатических зонах. Вместе с тем ксеноновые лампы имеют высокое напряжение зажигания и требуют применения специальных зажигающих устройств. Малый градиент потенциала обусловил использование в лампах более массивных вводов.
Световая отдача ламп растет с ростом удельной мощности и диаметра разрядной трубки. При больших плотностях тока разряд в инертных газах обладает очень высокой яркостью. По теоретическим оценкам, предельная яркость разряда в ксеноне может достигать 2 × 10³ Мкд/м². Основные параметры ксеноновых ламп высокого давления приведены в таблице 3. Трубчатые ксеноновые лампы работают как с естественным, так и с водяным охлаждением. Применение водяного охлаждения позволило поднять световую отдачу ламп с 20 – 29 до 35 – 45 лм/Вт, но несколько усложнило конструкцию. Горелка ламп с водяным охлаждением заключается в стеклянный сосуд, а в пространстве между горелкой и внешним сосудом-цилиндром циркулирует дистиллированная вода.
Таблица 3
Основные параметры ксеноновых ламп высокого давления
Тип лампы | Мощность, Вт | Напряжение, В | Ток, А | Световой поток, 10³, лм | Внутренний диаметр трубки, мм | Полная длина, мм | Средний срок службы, ч | Схема включения |
ДКсТ2000 ДКсТ5000 ДКсТ10000 ДКсТ20000 ДКсТ50000 ДКсТВ3000 ДКсТВ5000 ДКсТВ6000 ДКсТВ8000 ДКсТВ15000 ДКсТВ50000 | 2000 5000 10000 20000 50000 3000 5000 6000 8000 15000 50000 | 40 110 220 380 380 90 150 220 240 220 380 | 49 44 46 56 132 30 30 30 30 68 132 | 35,7 97,6 250 694 2230 81,2 139 211 232 592 2088 | 24 22 21 21 38 4 4 7 4 7 12 | 356 646 1260 1990 2700 285 315 478 375 460 935 | 300 300 800 800 500 100 100 300 800 200 200 | с балластом с балластом без балласта без балласта без балласта с балластом, на постоянном токе то же без балласта с выпрямителем без балласта без балласта |
Высокие температуры трубки (около 1000 К) требует применения кварцевого стекла и соответствующих конструкций молибденовых вводов, рассчитанных на большие токи. Электроды ламп выполняют из активированного вольфрама. Одна из конструкций ксеноновой лампы с водяным охлаждением приведена на рисунке 6.
Рисунок 6. Общий вид трубчатой ксеноновой лампы мощностью 6 кВт с водяным охлаждением
На параметры безбалластных ксеноновых ламп оказывает сильное влияние напряжение сети. При отклонениях напряжения сети на ±5 % номинального мощность лампы изменяется примерно на 20 %.
Обозначение ламп состоит из букв Д – дуговая, Кс ксеноновая, Т – трубчатая, В – с водяным охлаждением и цифр, обозначающих мощность лампы в ваттах и через дефис – номер разработки.
Источник: Афанасьева Е. И., Скобелев В. М., "Источники света и пускорегулирующая аппаратура: Учебник для техникумов", 2-е издание переработанное – Москва: Энергоатомиздат, 1986 – 272 с.